Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*E*)-2-[1-(2,4-Dimethoxyphenylimino)ethyl]phenol

Mehmet Akkurt,^a* Selvi Karaca,^a Ali Asghar Jarrahpour,^b Shadab Rezaei^b and Orhan Büyükgüngör^c

^aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ^bDepartment of Chemistry, College of Sciences, Shiraz University, 71454 Shiraz, Iran, and ^cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr

Received 13 July 2007; accepted 23 July 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.100; data-to-parameter ratio = 14.7.

In the title compound, $C_{16}H_{17}NO_3$, the dihedral angle between the two benzene rings is 66.20 (8)°. The molecular conformation is stabilized by an intramolecular $O-H\cdots N$ hydrogen bond formed between the phenol OH group and the Schiff base N atom.

Related literature

For background, see: Abilgaard et al. (2004); Allen et al. (1987); Dietz et al. (2000).

Experimental

Crystal data $C_{16}H_{17}NO_3$ $M_r = 271.31$

Monoclinic, $P2_1/c$ *a* = 11.0449 (8) Å b = 9.1047 (4) Å c = 15.775 (1) Å $\beta = 118.190 (5)^{\circ}$ $V = 1398.18 (16) \text{ Å}^{3}$ Z = 4

Data collection

Stoe IPDSII diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{min} = 0.947, T_{max} = 0.955$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.038 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.100 & \text{independent and constrained} \\ S &= 1.01 & \text{refinement} \\ 2754 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.16 \text{ e } \text{ Å}^{-3} \\ 187 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.14 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$O3-H3A\cdots N1$	0.976 (19)	1.588 (18)	2.5026 (15)	154.0 (19)

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund). AAJ and SR thank the Shiraz University Research Council for financial support (grant No. 85-GR-SC-23).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2486).

References

- Abilgaard, J., Bolvig, S. & Hansen, P. E. (2004). J. Mol. Struct. 700, 67-72.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Dietz, C., Heinemann, F. W. & Grohmann, A. (2000). Z. Naturforsch. Teil B, 55, 1037–1044.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

 $0.62 \times 0.56 \times 0.52 \text{ mm}$

16824 measured reflections

2754 independent reflections

2139 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int}=0.055$

supplementary materials

Acta Cryst. (2007). E63, o3597 [doi:10.1107/S1600536807035799]

(E)-2-[1-(2,4-Dimethoxyphenylimino)ethyl]phenol

M. Akkurt, S. Karaca, A. A. Jarrahpour, S. Rezaei and O. Büyükgüngör

Comment

Schiff bases derived from 2-hydroxyacetophenone are important ligands for transition metal complexes, especially for Ni and Cu (Dietz *et al.*, 2000). These Schiff bases are also interesting in hydrogen-bonding studies (Abilgaard *et al.*, 2004).

The title molecule, (I), (Fig. 1) adopts an *E* configuration with respect to the C=N double bond, with a C1—N1=C10—C11 torsion angle of -177.45 (14) ° and a C1—N1=C10 angle of 124.58 (12)°. In the hydroxyl group of the title compound, the C12—O3 bond distance is 1.3439 (18) Å. The C1—N1 and N1=C10 bond distances are 1.4230 (18) Å and 1.2856 (19) Å, respectively, in agreement with the mean literature values (Allen *et al.*, 1987). In the title compound, the two benzene rings make a dihedral angle of 66.20 (8)° with each other.

An intramolecular O—H···N hydrogen bond forms between the phenol OH group and the Schiff base N atom. The molecular structure is stabilized by this interaction and the crystal packing (Fig. 2) mainly by van der Waals forces.

Experimental

2-Hydroxyacetophenone (1.36 g, 1.2 ml, 10 mmol) and 2,4-dimethoxyaniline (0.79 g, 5.0 mmol) were dissolved in warm ethanol (10 ml). The reaction mixture was refluxed for 5 h and allowed to stand aside. Crude crystals were filtered off and washed with ethanol. The pure Schiff base was recrystallized as light brown crystals from ethanol (yield 98%, m.p. 644–646 K).

The IR spectrum showed absorption bands at 1612 cm⁻¹ (C=N) and a signal for hydroxyl group at 3423 cm⁻¹. The ¹H-NMR spectrum showed signals for CH₃ at 1.92, OCH₃ at 3.62, 3.64, ArH at 6.23–7.36 p.p.m. and hydroxyl proton at 14.12 p.p.m.. The ¹³C-NMR spectrum showed (CH₃) at 17.0 p.p.m., (OCH₃) at 54.87, 55.16 (ArC) at 103.82–132.09 p.p.m. (Ph—C—OH) at 162.36 and (C=N) 171.23 p.p.m.. The mass spectrum showed the base peak at *m/e* 271 and a peak at *m/e* 240 which is due to $C_{15}H_{14}NO_2$.

Refinement

The H atom of the hydroxy group was found from a difference Fourier map and refined freely. The other H atoms were geometrically placed and refined by using a riding model, with C—H = 0.93 - 0.96 Å and with $U_{iso}(H) = 1.2U_{eq}(C_{aromatic})$ or $1.5U_{eq}(C_{methyl})$.

Figures

Fig. 1. View of (I) with 30% probability displacement ellipsoids for the non-hydrogen atoms.

Fig. 2. The packing of the title compound, down the *b* axis.

(E)-2-[1-(2,4-Dimethoxyphenylimino)ethyl]phenol

Crystal data	
C ₁₆ H ₁₇ NO ₃	$F_{000} = 576$
$M_r = 271.31$	$D_{\rm x} = 1.289 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 23005 reflections
a = 11.0449 (8) Å	$\theta = 1.9 - 27.9^{\circ}$
b = 9.1047 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 15.775 (1) Å	T = 296 K
$\beta = 118.190 \ (5)^{\circ}$	Prism, light brown
$V = 1398.18 (16) \text{ Å}^3$	$0.62\times0.56\times0.52~mm$
<i>Z</i> = 4	
Data collection	
Stoe IPDS II diffractometer	2754 independent reflections
Monochromator: plane graphite	2139 reflections with $I > 2\sigma(I)$

diffractometer	2/54 independent reflections
Monochromator: plane graphite	2139 reflections with $I > 2\sigma(I)$
Detector resolution: 6.67 pixels mm ⁻¹	$R_{\rm int} = 0.055$
T = 296 K	$\theta_{\rm max} = 26.0^{\circ}$
ω scans	$\theta_{\min} = 2.1^{\circ}$
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)	$h = -13 \rightarrow 13$
$T_{\min} = 0.947, \ T_{\max} = 0.955$	$k = -11 \rightarrow 11$
16824 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	$w = 1/[\sigma^2(F_o^2) + (0.049P)^2 + 0.1562P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.100$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.01	$\Delta \rho_{max} = 0.16 \text{ e } \text{\AA}^{-3}$
2754 reflections	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$
187 parameters	Extinction correction: SHELXL97 (Sheldrick, 1997), FC [*] =KFC[1+0.001XFC ² Λ^3 /SIN(2 Θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.026 (2)

Secondary atom site location: difference Fourier map

Special details

Geometry. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2$ sigma(F^2) is used only for calculating -R-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and *R*-factors based on ALL data will be even larger.

x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
0.81398 (12)	0.67302 (11)	0.30408 (8)	0.0624 (4)
0.89590 (11)	1.18714 (11)	0.34470 (8)	0.0613 (4)
0.82320 (11)	0.50782 (12)	0.59626 (7)	0.0604 (3)
0.73912 (12)	0.66600 (12)	0.44954 (8)	0.0474 (4)
0.76813 (14)	0.79933 (14)	0.41560 (9)	0.0460 (4)
0.81382 (14)	0.80397 (14)	0.34636 (9)	0.0461 (4)
0.85456 (14)	0.93581 (15)	0.32488 (10)	0.0492 (4)
0.85139 (13)	1.06387 (14)	0.37117 (9)	0.0467 (4)
0.80608 (15)	1.06124 (16)	0.43887 (10)	0.0538 (5)
0.76698 (16)	0.92831 (16)	0.46068 (10)	0.0545 (5)
0.8797 (2)	0.66865 (19)	0.24560 (12)	0.0676 (6)
0.8879 (2)	1.32196 (17)	0.38609 (14)	0.0721 (6)
0.52977 (16)	0.6165 (2)	0.29877 (10)	0.0651 (5)
0.63442 (13)	0.58377 (14)	0.40028 (9)	0.0447 (4)
0.61824 (13)	0.45310 (14)	0.44888 (9)	0.0435 (4)
0.71375 (14)	0.42145 (14)	0.54554 (9)	0.0465 (4)
0.69547 (17)	0.29878 (16)	0.59079 (11)	0.0566 (5)
0.58574 (18)	0.20702 (16)	0.54196 (12)	0.0623 (6)
0.49193 (17)	0.23502 (18)	0.44764 (12)	0.0634 (6)
0.50768 (15)	0.35652 (16)	0.40257 (10)	0.0546 (5)
0.88450	0.93870	0.27880	0.0590*
	x 0.81398 (12) 0.89590 (11) 0.82320 (11) 0.73912 (12) 0.76813 (14) 0.81382 (14) 0.85456 (14) 0.85139 (13) 0.80608 (15) 0.76698 (16) 0.8797 (2) 0.8879 (2) 0.52977 (16) 0.63442 (13) 0.61824 (13) 0.71375 (14) 0.69547 (17) 0.58574 (18) 0.49193 (17) 0.50768 (15) 0.88450	x y $0.81398(12)$ $0.67302(11)$ $0.89590(11)$ $1.18714(11)$ $0.82320(11)$ $0.50782(12)$ $0.73912(12)$ $0.66600(12)$ $0.76813(14)$ $0.79933(14)$ $0.81382(14)$ $0.80397(14)$ $0.85456(14)$ $0.93581(15)$ $0.85139(13)$ $1.06387(14)$ $0.80608(15)$ $1.06124(16)$ $0.76698(16)$ $0.92831(16)$ $0.8797(2)$ $0.66865(19)$ $0.8879(2)$ $1.32196(17)$ $0.52977(16)$ $0.6165(2)$ $0.63442(13)$ $0.45310(14)$ $0.71375(14)$ $0.42145(14)$ $0.69547(17)$ $0.29878(16)$ $0.58574(18)$ $0.20702(16)$ $0.49193(17)$ $0.23502(18)$ $0.50768(15)$ $0.35652(16)$ 0.88450 0.93870	x y z 0.81398 (12) 0.67302 (11) 0.30408 (8) 0.89590 (11) 1.18714 (11) 0.34470 (8) 0.82320 (11) 0.50782 (12) 0.59626 (7) 0.73912 (12) 0.66600 (12) 0.44954 (8) 0.76813 (14) 0.79933 (14) 0.41560 (9) 0.81382 (14) 0.80397 (14) 0.34636 (9) 0.85456 (14) 0.93581 (15) 0.32488 (10) 0.85139 (13) 1.06387 (14) 0.37117 (9) 0.80608 (15) 1.06124 (16) 0.43887 (10) 0.76698 (16) 0.92831 (16) 0.46068 (10) 0.8797 (2) 0.66865 (19) 0.24560 (12) 0.8879 (2) 1.32196 (17) 0.38609 (14) 0.52977 (16) 0.6165 (2) 0.29877 (10) 0.63442 (13) 0.45310 (14) 0.44888 (9) 0.71375 (14) 0.42145 (14) 0.54554 (9) 0.69547 (17) 0.29878 (16) 0.59079 (11) 0.58574 (18) 0.20702 (16) 0.54196 (12) 0.49193 (17) 0.23502 (18) 0.44764 (12) 0.50768 (15) 0.35652 (16) 0.40257 (10) 0.88450 0.93870 0.27880

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H3A	0.8146 (19)	0.584 (2)	0.5502 (13)	0.081 (5)*
H5	0.80190	1.14710	0.46930	0.0650*
H6	0.73880	0.92590	0.50770	0.0650*
H7A	0.97490	0.69400	0.28360	0.0810*
H7B	0.83630	0.73740	0.19370	0.0810*
H7C	0.87250	0.57150	0.22000	0.0810*
H8A	0.94260	1.31660	0.45470	0.0860*
H8B	0.79400	1.34130	0.37000	0.0860*
H8C	0.92150	1.39960	0.36170	0.0860*
H9A	0.54460	0.55340	0.25580	0.0780*
H9B	0.53830	0.71710	0.28420	0.0780*
Н9С	0.43940	0.60000	0.29130	0.0780*
H13	0.75810	0.27890	0.65450	0.0680*
H14	0.57450	0.12510	0.57280	0.0750*
H15	0.41820	0.17170	0.41470	0.0760*
H16	0.44280	0.37540	0.33920	0.0660*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0874 (8)	0.0495 (6)	0.0738 (7)	0.0032 (5)	0.0573 (6)	0.0023 (5)
O2	0.0742 (7)	0.0501 (6)	0.0724 (7)	-0.0040 (5)	0.0452 (6)	0.0095 (5)
O3	0.0609 (6)	0.0649 (7)	0.0453 (5)	-0.0165 (5)	0.0168 (5)	0.0084 (5)
N1	0.0539 (7)	0.0478 (6)	0.0452 (6)	-0.0039 (5)	0.0274 (5)	0.0045 (5)
C1	0.0480 (7)	0.0491 (8)	0.0439 (7)	-0.0010 (6)	0.0241 (6)	0.0075 (6)
C2	0.0493 (7)	0.0468 (7)	0.0458 (7)	0.0049 (6)	0.0255 (6)	0.0056 (6)
C3	0.0529 (8)	0.0547 (8)	0.0497 (7)	0.0052 (6)	0.0323 (6)	0.0103 (6)
C4	0.0447 (7)	0.0475 (7)	0.0485 (7)	0.0005 (6)	0.0226 (6)	0.0102 (6)
C5	0.0645 (9)	0.0495 (8)	0.0546 (8)	-0.0038 (6)	0.0341 (7)	-0.0012 (6)
C6	0.0665 (9)	0.0574 (9)	0.0512 (7)	-0.0059 (7)	0.0374 (7)	0.0009 (6)
C7	0.0900 (12)	0.0635 (10)	0.0707 (10)	0.0175 (8)	0.0555 (10)	0.0090 (8)
C8	0.0801 (11)	0.0478 (9)	0.0975 (13)	-0.0058 (8)	0.0495 (10)	0.0060 (8)
C9	0.0596 (9)	0.0817 (11)	0.0478 (8)	-0.0058 (8)	0.0204 (7)	0.0110 (7)
C10	0.0469 (7)	0.0524 (8)	0.0413 (6)	0.0005 (6)	0.0262 (6)	0.0003 (6)
C11	0.0495 (7)	0.0463 (7)	0.0423 (7)	-0.0031 (5)	0.0280 (6)	-0.0037 (5)
C12	0.0512 (7)	0.0483 (7)	0.0458 (7)	-0.0053 (6)	0.0277 (6)	-0.0013 (6)
C13	0.0673 (9)	0.0564 (9)	0.0532 (8)	-0.0015 (7)	0.0343 (7)	0.0078 (6)
C14	0.0808 (11)	0.0474 (8)	0.0763 (10)	-0.0089 (7)	0.0517 (9)	0.0016 (7)
C15	0.0680 (10)	0.0570 (9)	0.0743 (10)	-0.0209 (7)	0.0412 (9)	-0.0148 (8)
C16	0.0563 (8)	0.0594 (9)	0.0512 (8)	-0.0097 (7)	0.0280 (7)	-0.0102 (6)

Geometric parameters (Å, °)

O1—C2	1.3666 (17)	C13—C14	1.371 (3)
O1—C7	1.419 (3)	C14—C15	1.377 (2)
O2—C4	1.3673 (18)	C15—C16	1.370 (2)
O2—C8	1.413 (2)	С3—Н3	0.9300
O3—C12	1.3439 (18)	С5—Н5	0.9300
O3—H3A	0.976 (19)	С6—Н6	0.9300

N1—C1	1.4230 (18)	С7—Н7А	0.9600
N1—C10	1.2856 (19)	С7—Н7В	0.9600
C1—C6	1.376 (2)	С7—Н7С	0.9600
C1—C2	1.404 (2)	C8—H8A	0.9600
C2—C3	1.379 (2)	С8—Н8В	0.9600
C3—C4	1.3849 (19)	C8—H8C	0.9600
C4—C5	1.377 (2)	С9—Н9А	0.9600
C5—C6	1.382 (2)	С9—Н9В	0.9600
C9—C10	1.4968 (19)	С9—Н9С	0.9600
C10—C11	1.4713 (19)	С13—Н13	0.9300
C11—C16	1.398 (2)	C14—H14	0.9300
C11—C12	1.4146 (18)	C15—H15	0.9300
C12—C13	1.391 (2)	C16—H16	0.9300
C2—O1—C7	117.45 (13)	С4—С5—Н5	121.00
C4—O2—C8	117.52 (14)	С6—С5—Н5	121.00
C12—O3—H3A	103.2 (12)	C1—C6—H6	119.00
C1—N1—C10	124.58 (12)	C5—C6—H6	119.00
N1—C1—C6	118.35 (13)	01—C7—H7A	109.00
C2-C1-C6	118.10 (13)	01—C7—H7B	109.00
N1-C1-C2	123.10(12)	01—C7—H7C	109.00
01 - C2 - C3	124 31 (14)	H7A—C7—H7B	110.00
C1 - C2 - C3	119 76 (12)	H7A—C7—H7C	109.00
01 - C2 - C1	115.94 (12)	H7B—C7—H7C	109.00
$C_2 - C_3 - C_4$	120 71 (14)	02—C8—H8A	109.00
02 - C4 - C5	124 46 (12)	02—C8—H8B	109.00
C_{3} C_{4} C_{5}	120.21 (13)	02—C8—H8C	110.00
02 - C4 - C3	115 32 (13)	H8A—C8—H8B	109.00
C4—C5—C6	118.62 (14)	H8A—C8—H8C	109.00
C1 - C6 - C5	122.58 (15)	H8B—C8—H8C	109.00
N1-C10-C11	116 87 (12)	C10-C9-H9A	109.00
C9-C10-C11	119 74 (13)	C10—C9—H9B	109.00
N1-C10-C9	123 39 (13)	C10-C9-H9C	109.00
C10-C11-C16	121.83 (12)	Н9А—С9—Н9В	109.00
C_{12} C_{11} C_{16}	117 23 (12)	H9A-C9-H9C	110.00
C10-C11-C12	120.94 (12)	H9B-C9-H9C	110.00
03 - C12 - C13	118 18 (12)	C12—C13—H13	120.00
C_{11} C_{12} C_{13}	120 11 (14)	C12 - C13 - H13	120.00
03-C12-C11	121.71 (12)	C13—C14—H14	120.00
C_{12} C_{13} C_{14}	120.36(14)	C15-C14-H14	120.00
C_{13} C_{14} C_{15}	120.58 (15)	C14 - C15 - H15	120.00
C14-C15-C16	119 68 (16)	C16—C15—H15	120.00
$C_{11} - C_{16} - C_{15}$	122.03 (14)	C11—C16—H16	119.00
C2—C3—H3	120.00	C15—C16—H16	119.00
C4—C3—H3	120.00		/
C7-01-C2-C1	-170.09(14)	02	-178 43 (14)
$C_{7} = 01 = 02 = 03$	10.1.(2)	C_{2}^{-} C_{4}^{-} C_{5}^{-} C_{6}^{-}	13(2)
$C_{1}^{2} = C_{2}^{2} = C_{3}^{2}$	-35(2)	$C_{4} = C_{5} = C_{6} = C_{1}$	-1.8(2)
$C_{8} = 0^{2} = C_{4} = C_{3}^{2}$	176 74 (15)	N1 - C10 - C11 - C12	0.4(2)
00 02 07 03	1,0.17(13)	111 010 011 012	0. 1 (<i>2</i>)

supplementary materials

C10-N1-C1-C2	-72.2 (2)	N1-C10-C11-C16	179.48 (15)
C1-N1-C10-C11	-177.45 (14)	C9—C10—C11—C12	-178.44 (14)
C1—N1—C10—C9	1.4 (2)	C9—C10—C11—C16	0.6 (2)
C10—N1—C1—C6	115.74 (17)	C10-C11-C12-O3	-0.8 (2)
N1—C1—C2—C3	-172.73 (14)	C10-C11-C12-C13	178.90 (15)
N1-C1-C6-C5	173.90 (15)	C16—C11—C12—O3	-179.83 (14)
C6—C1—C2—C3	-0.6 (2)	C16-C11-C12-C13	-0.2 (2)
C2—C1—C6—C5	1.4 (2)	C10-C11-C16-C15	-179.76 (16)
N1-C1-C2-O1	7.4 (2)	C12-C11-C16-C15	-0.7 (2)
C6—C1—C2—O1	179.57 (14)	O3-C12-C13-C14	-179.74 (16)
O1—C2—C3—C4	-179.95 (15)	C11-C12-C13-C14	0.6 (3)
C1—C2—C3—C4	0.2 (2)	C12-C13-C14-C15	-0.2 (3)
C2—C3—C4—O2	179.18 (14)	C13-C14-C15-C16	-0.7 (3)
C2—C3—C4—C5	-0.6(2)	C14-C15-C16-C11	1.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
O3—H3A…N1	0.976 (19)	1.588 (18)	2.5026 (15)	154.0 (19)

